Respuesta :

Answer:

The total area is [tex]16\sqrt{3}\ units^{2}[/tex]

Step-by-step explanation:

we know that

The surface area of the regular pyramid is equal to the area of its four triangular faces

Each face is an equilateral triangle

so

Applying the law of sines

The surface area is equal to

[tex]SA=4[\frac{1}{2}b^{2}sin(60\°)][/tex]

we have

[tex]b=4\ units[/tex]

[tex]sin(60\°)=\frac{\sqrt{3}}{2}[/tex]

[tex]SA=4[\frac{1}{2}(4)^{2}\frac{\sqrt{3}}{2}][/tex]

[tex]SA=16\sqrt{3}\ units^{2}[/tex]

Answer:

16 sqrt 3

Step-by-step explanation: