Answer:
The initial value of the given geometric sequence is 2.
Step-by-step explanation:
The given points are (1,2), (2,4) and (3,8).
It means the first term is 2, second term is 4 and third term is 8. So, the common ratio is
[tex]r=\frac{a_2}{a_1}=\frac{4}{2}=2[/tex]
A geometric sequence is defined as
[tex]f(n)=ar^{n-1}[/tex]
Where, a is first term of the sequence, r is common ratio and n is number of term. In other words f(1) is the initial value of the geometric sequence.
The given geometric sequence is
[tex]f(n)=2(2)^{n-1}[/tex]
The value of f(1) is 2.
Therefore the initial value of the given geometric sequence is 2.