Respuesta :

Answer:

x = 1 + √6

x = 1 - √6

The two values of x that are roots to the given equation are [tex]x= -1 + \sqrt{6}[/tex] and [tex]x= -1 - \sqrt{6}[/tex]

From the question,

We are to determine the values of x that are roots to the quadratic equation x² +2x -5=0

Using the quadratic formula

[tex]x= \frac{-b \pm \sqrt{b^{2} -4ac} }{2a}[/tex]

From the given equation x² +2x -5=0

[tex]a = 1, \ b = 2, \ and \ c=-5[/tex]

Putting the values into the equation, we get

[tex]x= \frac{-(2) \pm \sqrt{(2)^{2} -4(1)(-5)} }{2(1)}[/tex]

This becomes

[tex]x= \frac{-2 \pm \sqrt{4 --20} }{2}[/tex]

[tex]x= \frac{-2 \pm \sqrt{4+20} }{2}[/tex]

[tex]x= \frac{-2 \pm \sqrt{24} }{2}[/tex]

Then,

[tex]x= \frac{-2 \pm 2\sqrt{6} }{2}[/tex]

∴ [tex]x= -1 \pm \sqrt{6}[/tex]

[tex]x= -1 + \sqrt{6} \ OR \ x= -1 - \sqrt{6}[/tex]

Hence, the two values of x that are roots to the given equation are [tex]x= -1 + \sqrt{6}[/tex] and [tex]x= -1 - \sqrt{6}[/tex]

Learn more here: https://brainly.com/question/17256836