Respuesta :

Answer: The first number is 2000 times greater than second number.

Step-by-step explanation:

Let the first number be 'x' and second number be 'y'

We are given:

x = [tex]8\times 10^{-3}[/tex]

y = [tex]4\times 10^{-6}[/tex]

To calculate the times, number 'x' is greater than number 'y', we divide the two numbers:

[tex]\frac{x}{y}=\frac{8\times 10^{-3}}{4\times 10^{-6}}\\\\\frac{x}{y}=2\times 10^3\\\\x=2000y[/tex]

Hence, the first number is 2000 times greater than second number.

The number [tex]8\times 10^{-3}[/tex] is [tex]2000[/tex] times grater than the number [tex]4\times 10^{-6}[/tex].

Given information:

The number [tex]8 \times 10^{-3}[/tex]

And number [tex]4\times 10^{-6}[/tex]

Now , consider the first number as [tex]x[/tex] and number second as [tex]y[/tex].

So, according to the information given in the question we can write as:

[tex]\frac{x}{y} =\frac{8\times 10^{-3}}{4\times 10^{-6}}[/tex]

[tex]\frac{x}{y} = 2\times 10^3\\x=2000y[/tex]

Hence, We can conclude that the number [tex]8\times 10^{-3}[/tex] is [tex]2000[/tex] times the number [tex]4\times 10^{-6}[/tex].

For more information visit:

https://brainly.com/question/17104957