Complete the missing parts of the table for the following function

Answer:
At x=-2, y=16
At x=0, y=1
At x=3, y=1/64
Step-by-step explanation:
As we know that the function is given by:
[tex]y=(\frac{1}{4})^{x}[/tex]
The table represents the output values on given inputs.
So, when the input is -2:
[tex]y=(\frac{1}{4} )^{-2}\\y= \frac{(1)^{-2}}{(4)^{-2}}[/tex]
To convert the power in positive:
[tex]y=\frac{(4)^{2}}{(1)^{2} }\\y=16[/tex]
So the output for x=-2 is 16.
For x=0
[tex]y=(\frac{1}{4})^{0}[/tex]
Anything whose exponent is zero equals to 1, so y=1
For x=3, output is incomplete.
To complete,
[tex]y=(\frac{1}{4})^{3}\\y=\frac{(1)^{2} }{(4)^{2} }\\y=\frac{1}{64}[/tex] ..