Respuesta :

For this case we must simplify the following expression:

[tex]\sqrt [5] {\frac {10x} {3x ^ 3}}[/tex]

We rewrite the expression as:

[tex]\sqrt [5] {\frac {10x} {x * 3x ^ 2}} =[/tex]

We eliminate common factors:

[tex]\sqrt [5] {\frac {10} {3x ^ 2}} =\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}}[/tex]

We multiply the numerator and denominator:

[tex](\sqrt [5] {3x ^ 2}) ^ 4:\\\frac {\sqrt [5] {10}} {\sqrt [5] {3x ^ 2}} * \frac {(\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 4} =[/tex]

\frac {\ sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {\sqrt [5] {3x ^ 2} * (\sqrt [5] {3x ^ 2} ) ^ 4} =

[tex]\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {(\sqrt [5] {3x ^ 2}) ^ 5} =\\\frac {\sqrt [5] {10} * (\sqrt [5] {3x ^ 2}) ^ 4} {3x ^ 2} =[/tex]

[tex]\frac {\sqrt [5] {10} * \sqrt [5] {(3x ^ 2) ^ 4}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 8}} {3x ^ 2} =\\\frac {\sqrt [5] {10} * \sqrt [5] {81x ^ 5 * x ^ 3}} {3x ^ 2} =[/tex]

[tex]\frac {\sqrt [5] {10} * x \sqrt [5] {81x ^ 3}} {3x ^ 2} =\\\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}[/tex]

Answer:

[tex]\frac {x \sqrt [5] {810x ^ 3}} {3x ^ 2}[/tex]

[tex]\frac {\sqrt [5] {810x ^ 3}} {3x}[/tex]

Answer:

The simplified form is [tex]\frac{\sqrt[5]{810 x^{3}}}{3x}[/tex]

Step-by-step explanation:

we need to simplify the value of x in given expression:

[tex]\sqrt[5]{\frac{10x}{3x^{3}}}[/tex]

Re- write the above as,

[tex]\sqrt[5]{\frac{10}{3x^{2}}}[/tex]

[tex]\frac{\sqrt[5]{{10}}}{\sqrt[5]{3x^{2}}}[/tex]

Multiply numerator and denominator by [tex](\sqrt[5]{3x^{2}})^{4}[/tex]

[tex]\frac{\sqrt[5]{{10}}}{\sqrt[5]{3x^{2}}} \times \frac{(\sqrt[5]{3x^{2}})^{4}}{(\sqrt[5]{3x^{2}})^{4}}[/tex]

[tex]\frac{\sqrt[5]{{10}}{\sqrt[5]{(3x^{2}}})^4}{{3x^{2}}}[/tex]

[tex]\frac{\sqrt[5]{{10}}{\sqrt[5]{81x^{8}}}}{{3x^{2}}}[/tex]

[tex]\frac{x \sqrt[5]{810 x^{3}}}{3x^{2}}[/tex]

[tex]\frac{\sqrt[5]{810 x^{3}}}{3x}[/tex]

Hence, the simplified form is

[tex]\frac{\sqrt[5]{810 x^{3}}}{3x}[/tex]