Respuesta :

Answer:

the vertex is:

(2, -1)

Step-by-step explanation:

First solve the equation for the variable y

[tex]x^2-16y-4x-12=0[/tex]

Add 16y on both sides of the equation

[tex]16y=x^2-16y+16y-4x-12[/tex]

[tex]16y=x^2-4x-12[/tex]

Notice that now the equation has the general form of a parabola

[tex]ax^2 +bx +c[/tex]

In this case

[tex]a=1\\b=-4\\c=-12[/tex]

Add [tex](\frac{b}{2}) ^ 2[/tex] and subtract [tex](\frac{b}{2}) ^ 2[/tex] on the right side of the equation

[tex](\frac{b}{2}) ^ 2=(\frac{-4}{2}) ^ 2[/tex]

[tex](\frac{b}{2}) ^ 2=(-2) ^ 2[/tex]

[tex](\frac{b}{2}) ^ 2=4[/tex]

[tex]16y=(x^2-4x+4)-4-12[/tex]

Factor the expression that is inside the parentheses

[tex]16y=(x-2)^2-16[/tex]

Divide both sides of the equality between 16

[tex]\frac{16}{16}y=\frac{1}{16}(x-2)^2-\frac{16}{16}[/tex]

[tex]y=\frac{1}{16}(x-2)^2-1[/tex]

For an equation of the form

[tex]y=a(x-h)^2 +k[/tex]

the vertex is: (h, k)

In this case

[tex]h=2\\k =-1[/tex]

the vertex is:

(2, -1)