Respuesta :

Answer:

Part 1) [tex]A=96\ cm^{2}[/tex]

part 2) [tex]A=40.8\ ft^{2}[/tex]

Step-by-step explanation:

Part 1)

we know that

The area of a trapezoid is equal to

[tex]A=(1/2)[b1+b2]h[/tex]

In this problem we have

[tex]b1=12\ cm[/tex]

[tex]b2=6+12+2=20\ cm[/tex]

[tex]h=6\ cm[/tex] ----> perpendicular distance between the two bases

substitute

[tex]A=(1/2)[12+20](6)[/tex]

[tex]A=96\ cm^{2}[/tex]

Part 2)

we know that

The area of a kite is equal to

[tex]A=(1/2)[D1*D2][/tex]

we have

[tex]D1=10.2\ ft[/tex]

[tex]D2=8\ ft[/tex]

substitute

[tex]A=(1/2)[10.2*8][/tex]

[tex]A=40.8\ ft^{2}[/tex]

Answer:

25) 96 cm²

26)  40.8 ft ²

Step-by-step explanation:

25) To find the area of trapezoid

Area of trapezoid = h(a + b)/2

Here a = 6 + 12 + 2 = 20 cm

b = 12 cm and h = 6

Area =  h(a + b)/2

 = 6(20 + 12)/2

 = 96 cm²

26) To find the area of kite

Area of kite = pq/2

Where p and q are the two diagonals

Here p = 10.2 ft and q = 8 ft

Area = pq/2

 = (10.2 * 8)/2 = 40.8 ft²