Respuesta :

Answer:

The solution is:

[tex](3, -4)[/tex]

Step-by-step explanation:

We have the following equations

[tex]-4x - 9y =24[/tex]

[tex]7x + 3y =9[/tex]

To solve the system multiply by 3 the second equation and add it to the first equation

[tex]3*7x + 3*3y =3*9[/tex]

[tex]21x + 9y =27[/tex]

[tex]-4x - 9y =24[/tex]

---------------------------------------

[tex]17x=51[/tex]

[tex]x=\frac{51}{17}[/tex]

[tex]x=3[/tex]

Now substitute the value of x in any of the two equations and solve for y

[tex]7(3) + 3y =9[/tex]

[tex]21 + 3y =9[/tex]

[tex]3y =9-21[/tex]

[tex]3y =-12[/tex]

[tex]y =-\frac{12}{3}[/tex]

[tex]y =-4[/tex]

The solution is:

[tex](3, -4)[/tex]

Answer:

x = 3 and y = -4

Step-by-step explanation:

It is given that,

-4x - 9y = 24    -----(1)

7x + 3y = 9   ---(2)

To find the solution of given equations

eq(2) * 3 ⇒

21x + 9y  = 27 -----(3)

eq(1) + eq(3) ⇒

-4x  - 9y = 24    -----(1)

21x + 9y  = 27 -----(3)

17x = 51

x = 51/17 = 3

Substitute the value of x in eq(1)

-4x - 9y = 24    -----(1)

-4*3 - 9y = 24

-9y = 24 + 12

-9y = 36

y = 36/(-9) = -4

Therefore x = 3 and y = -4