Respuesta :

Answer:

The vertex is: [tex](6, 8)[/tex]

Step-by-step explanation:

First solve the equation for the variable y

[tex]x^2-4y-12x+68=0[/tex]

Add 4y on both sides of the equation

[tex]4y=x^2-4y+4y-12x+68[/tex]

[tex]4y=x^2-12x+68[/tex]

Notice that now the equation has the general form of a parabola

[tex]ax^2 +bx +c[/tex]

In this case

[tex]a=1\\b=-12\\c=68[/tex]

Add [tex](\frac{b}{2}) ^ 2[/tex] and subtract [tex](\frac{b}{2}) ^ 2[/tex] on the right side of the equation

[tex](\frac{b}{2}) ^ 2=(\frac{-12}{2}) ^ 2\\\\(\frac{b}{2}) ^ 2=(-6) ^ 2\\\\(\frac{b}{2}) ^ 2=36[/tex]

[tex]4y=(x^2-12x+36)-36+68[/tex]

Factor the expression that is inside the parentheses

[tex]4y=(x-6)^2+32[/tex]

Divide both sides of the equality between 4

[tex]\frac{4}{4}y=\frac{1}{4}(x-6)^2+\frac{32}{4}[/tex]

[tex]y=\frac{1}{4}(x-6)^2+8[/tex]

For an equation of the form

[tex]y=a(x-h)^2 +k[/tex]

the vertex is: (h, k)

In this case

[tex]h=6\\k =8[/tex]

the vertex is: [tex](6, 8)[/tex]

Answer: 6, 8

Step-by-step explanation: