Respuesta :
Answer:
x = -1 and y = -4
Step-by-step explanation:
It is given that,
3x - 2y = 5 ----(1)
-2x - 3y = 14 ------(2)
To find the solution of equations
(1) * 2 ⇒
6x - 4y = 10 -----(3)
(2) * 3 ⇒
-6x - 9y = 42 ----(4)
eq(3) + eq(4) ⇒
6x - 4y = 10 -----(3)
-6x - 9y = 42 ----(4)
0 - 13y = 52
y = 52/(-13) = -4
Substitute the value of y in eq(1)
3x - 2y = 5 ----(1)
3x - (2 * -4) = 5
3x +8 = 5
3x = 5 - 8 = -3
x = -3/3 = -1
Therefore x = -1 and y = -4
Answer:
The solution is:
[tex](-1, -4)[/tex]
Step-by-step explanation:
We have the following equations
[tex]3x - 2y =5[/tex]
[tex]-2x - 3y = 14[/tex]
To solve the system multiply by [tex]\frac{3}{2}[/tex] the second equation and add it to the first equation
[tex]-2*\frac{3}{2}x - 3\frac{3}{2}y = 14\frac{3}{2}[/tex]
[tex]-3x - \frac{9}{2}y = 21[/tex]
[tex]3x - 2y =5[/tex]
---------------------------------------
[tex]-\frac{13}{2}y=26[/tex]
[tex]y=-26*\frac{2}{13}[/tex]
[tex]y=-4[/tex]
Now substitute the value of y in any of the two equations and solve for x
[tex]-2x - 3(-4) = 14[/tex]
[tex]-2x +12 = 14[/tex]
[tex]-2x= 14-12[/tex]
[tex]-2x=2[/tex]
[tex]x=-1[/tex]
The solution is:
[tex](-1, -4)[/tex]