Respuesta :

Answer:

this is the answer with steps

hope it helps!

Ver imagen yves379
Ver imagen yves379
Ver imagen yves379

Answer:

The solution is:

[tex](0, 1)[/tex]

Step-by-step explanation:

We have the following equations

[tex]9x + 4y = 4[/tex]

[tex]-5x + 7y = 7[/tex]

To solve the system multiply by [tex]\frac{9}{5}[/tex] the second equation and add it to the first equation

[tex]-5*\frac{9}{5}x + 7\frac{9}{5}y = 7\frac{9}{5}[/tex]

[tex]-9x + \frac{63}{5}y = \frac{63}{5}[/tex]

[tex]9x + 4y = 4[/tex]

---------------------------------------

[tex]\frac{83}{5}y=\frac{83}{5}[/tex]

[tex]y=1[/tex]

Now substitute the value of y in any of the two equations and solve for x

[tex]9x + 4(1) = 4[/tex]

[tex]9x +4 = 4[/tex]

[tex]9x = 4-4[/tex]

[tex]9x = 0[/tex]

[tex]x=0[/tex]

The solution is:

[tex](0, 1)[/tex]