Enter the values needed to find the length EF (Simplify your answer)
Please Help Me!!!

Answer:
The missing term is 3b
Step-by-step explanation:
step 1
Find the coordinates of point F
Find the midpoint AB
[tex]F(\frac{-3a+3a}{2},\frac{b+b}{2})\\ \\F(0,b)[/tex]
step 2
Find the coordinates of point E
Find the midpoint AC
[tex]E(\frac{-3a-a}{2},\frac{b-5b}{2})\\ \\E(-2a,-2b)[/tex]
step 3
Find the distance EF
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
substitute
[tex]EF=\sqrt{(b+2b)^{2}+(0+2a)^{2}}[/tex]
[tex]EF=\sqrt{(3b)^{2}+(2a)^{2}}[/tex]
therefore
The missing term is 3b