PLease help! timedd

Find the angle between u = sqr5i-8J and v = sqr5i+j. Round to the nearest tenth of a degree. (the square root is only on the 5i in both)
A.65.9
B.98.5
C.90.4
D33.3



Use the dot product to find [v] when v =(-2,-1)


A.-1

b.-3

c;sqr5

dsqr3


Respuesta :

Answer:

98.5 degrees

Step-by-step explanation:

To find the angle measurement between two vectors use: cos(theta)=(u dot v)/(|u|*|v|)

The vectors are u=sqrt(5)i-8j and v=sqrt(5)i+1j .

So find the dot product of u and v.  u dot v=sqrt5*sqrt(5)+(-8)*(1)=5-8=-3.

Second step: Find the magnitude of both vectors.  So to find the magnitude of a vector, let's call it t when t=ai+bj, you just do |t|=sqrt(a^2+b^2).

|u|=sqrt(5+64)=sqrt(69) and |v|=sqrt(5+1)=sqrt(6)

Now multiply your magnitudes of your vectors: sqrt(69)*sqrt(6)=sqrt(414).

So now we have:

cos(theta)=-3/sqrt(414)

Now arccos( ) or cos^(-1) to find the angle theta.

theta=cos^(-1)[-3/sqrt(414)] which is approximately 98.5 degrees.

Answer:

Ans 1) The correct option is B) 98.5

Ans 2) The correct option is C) [tex]\sqrt{5}[/tex]

Step-by-step explanation:

The angle measurement between two vectors by:

[tex]cos(\theta)=\frac{(u.v)}{(|u|\times |v|)}[/tex]

Magnitude of vector t=ai+bj, calculated by:

[tex]|t|=\sqrt{a^{2}+b^{2}}[/tex]

The given vectors are [tex]u=\sqrt{5}i-8j[/tex] and [tex]v=\sqrt{5}i+1j[/tex]

First find the dot product of u and v;

[tex]u.v=(\sqrt{5}i-8j)(\sqrt{5}i+1j) = 5-8= - 3[/tex]

Now,  Find the magnitude of both vectors u and v.  

[tex]|u|=\sqrt{(\sqrt{5})^{2}+8^{2}}[/tex]

[tex]|u|=\sqrt{5+64}[/tex]

[tex]|u|=\sqrt{69}[/tex]

and

[tex]|v|=\sqrt{(\sqrt{5})^{2}+1^{2}}[/tex]

[tex]|v|=\sqrt{5+1}[/tex]

[tex]|v|=\sqrt{6}[/tex]

Now, put the all values in  [tex]cos(\theta)=\frac{(u.v)}{(|u|\times |v|)}[/tex]

[tex]cos(\theta)=\frac{-3}{\sqrt{69} \times \sqrt{6}}[/tex]

[tex]=\frac{-3}{414}[/tex]

take arc cos both the sides,

[tex]\theta=cos^{-1} \frac{-3}{\414}[/tex]

[tex]\theta=98.5 \degree[/tex]   (approx)

Therefore, the correct option is B) 98.5

Ans 2)  calculate IvI by

If t= ai +bj then magnitute is [tex]\sqrt{a^{2}+b^{2}}[/tex]

Given : v = (-2,-1)

it means v = -2i -1 j

[tex]|v| =\sqrt{(-2)^{2}+(-1)^{2}}[/tex]

[tex]|v| =\sqrt{4+1}[/tex]

[tex]|v| =\sqrt{5}[/tex]

Therefore, the correct option is C) [tex]\sqrt{5}[/tex]