Respuesta :

Answer:

center (1,-3) and radius is 5

Step-by-step explanation:

We have to use completing the square here:

x^2-2x    + y^2+6y         =15  (reorder some things and added 15 on both sides)

x^2-2x+(-2/2)^2  + y^2+6y+(6/2)^2   =15+(-2/2)^2+(6/2)^2 (whatever you add on one side you also do to the other side)

x^2-2x+(-1)^2   + y^2+6y+(3)^2=15+1+9

(x-1)^2         +    (y+3)^2          =25

Center is (1,-3) and radius is 5

ANSWER

The center is (1,-3) and the radius is r=5 units.

EXPLANATION

The given equation is:

[tex] {x}^{2} + {y}^{2} - 2x + 6y - 15 = 0[/tex]

Let rearrange to get:

[tex]{x}^{2} - 2x + {y}^{2} + 6y=15[/tex]

We complete the square to get;

[tex]{x}^{2} - 2x + ( { - 1)}^{2} + {y}^{2} + 6y + {3}^{2} = 15+ ( { - 1)}^{2} + {3}^{2}[/tex]

[tex] ( {x - 1)}^{2} +( {y + 3)}^{2} = 15 + 1+ 9[/tex]

[tex] ( {x - 1)}^{2} +( {y + 3)}^{2} =25[/tex]

[tex]( {x - 1)}^{2} +( {y + 3)}^{2} = {5}^{2} [/tex]

Comparing to

[tex]( {x - h)}^{2} +( {y - h)}^{2} = {r}^{2} [/tex]

The center is (1,-3) and the radius is r=5 units.