Respuesta :

Answer:

sqrt(2-sqrt(3))/2

Step-by-step explanation:

sin(15)=sin(30/2)=sqrt(1-cos(x))/sqrt(2)=(1-sqrt(3)/2)/sqrt(2)

Again we don't like compound fractions so multiply top and bottom inside sqrt( ) by 2.

sin(15)=sqrt(2-sqrt(3))/sqrt(4)

simplify

sin(15)=sqrt(2-sqrt(3))/2

Answer:

[tex]\frac{\sqrt{2-\sqrt{3} } }{2}[/tex]

Step-by-step explanation:

[tex]sin(\frac{u}{2} =\sqrt[+]{\frac{1-cosu}{2} }                              =\sqrt{\frac{1-cos30^0}{2} } \\=\sqrt{(\frac{1-\frac{\sqrt{3} }{2)} }{2}  } \\=\sqrt{\frac{2-\sqrt{3} }{4} } \\=\sqrt{\frac{2-\sqrt{3} }{\sqrt{4} } } \\=\sqrt{\frac{2-\sqrt{3} }{2} } \\[/tex]