Respuesta :

Answer:

f=ma

Explanation:

According to second law of motion Force is directly proportional to rate of change of momentum.

so F is directly proportional to [tex]\frac{dp}{dt}[/tex]

we know that momentum P= MV

so

[tex]f=d(mv)/dt=m\frac{dv}{dt}[/tex]

thus we get F=ma.

Answer:

Let F be external force applied on the body in the direction of motion of the body for time interval [tex]\sf \Delta t[/tex], the the velocity of a body of mass m changes from [tex]\sf v [/tex] to [tex]\sf v + \Delta v[/tex] i.e. change in momentum, [tex]\sf \Delta p = m \Delta v [/tex].

According to Newton's second law :

[tex]:\implies \sf F \propto \dfrac{\Delta p}{\Delta t} \\ \\ \\ [/tex]

[tex]:\implies \sf F = k \: \dfrac{\Delta p}{\Delta t} \\ \\ \\ [/tex]

Where k is a constant of proportionality.

If limit [tex]\sf \Delta t \rightarrow 0,[/tex] then the term [tex]\sf \dfrac{\Delta p}{\Delta t}[/tex] becomes the derivative [tex]\sf \dfrac{dp}{dt}[/tex].

Thus,

[tex]:\implies \sf F = k \: \dfrac{dp}{dt} \\ \\ \\ [/tex]

For a body of fixed mass (m), we have :

[tex]:\implies \sf F = k \dfrac{d(mv)}{dt} \\ \\ \\ [/tex]

[tex]:\implies \sf F = km \: \dfrac{dv}{dt} \\ \\ \\ [/tex]

[tex]:\implies \sf F = kma \\ \\ \\ [/tex]

If v is fixed and m is variable then :

[tex]:\implies \sf F = \dfrac{kd(mv)}{dt} \\ \\ \\ [/tex]

[tex]:\implies \sf F = \dfrac{kvdm}{dt} \\ \\ \\ [/tex]

because, k = 1 then :

[tex]:\implies \sf F =\dfrac{vdm}{dt}[/tex]

Now, a unit force may be defined as the force which produces unit acceleration in a body of unit mass :]

So,

F = 1

m = 1

a = 1

k = 1

So,

[tex]:\implies \underline{ \boxed{ \sf F = ma}}[/tex]