Respuesta :

Answer:

In the explanation

Step-by-step explanation:

Going to start with the sum identities

sin(x+y)=sin(x)cos(y)+sin(y)cos(x)

cos(x+y)=cos(x)cos(y)-sin(x)sin(y)

sin(x)cos(x+y)=sin(x)cos(x)cos(y)-sin(x)sin(x)sin(y)

cos(x)sin(x+y)=cos(x)sin(x)cos(y)+cos(x)sin(y)cos(x)

Now we are going to take the line there and subtract the line before it from it.

I do also notice that column 1 have cos(y)cos(x)sin(x) in common while column 2 has sin(y) in common.

cos(x)sin(x+y)-sin(x)cos(x+y)

=0+sin(y)[cos^2(x)+sin^2(x)]

=sin(y)(1)

=sin(y)