Respuesta :

Answer:

A

Step-by-step explanation:

Sum of the first n terms of a geometric series is:

S = a₁ (1 - r^n) / (1 - r)

Here, a₁ = 0.2, r = 6, and n = 5.

S = 0.2 (1 - 6^5) / (1 - 6)

S = 311

Answer:

Option A

Step-by-step explanation:

For the given geometric series  

a₁ = 0.2

a₅ = 259.2

r = 6

Then we have to find the sum of initial 5 terms of this series

[tex]S_{n} =\frac{a_1(r^4-1)}{(r-1)}=\frac{0.2(6^3-1)}{(6-1)}[/tex]

[tex]=\frac{0.2(7776-1)}{5}[/tex]

[tex]\frac{0.2\times 7775}{5}[/tex]

= 311

Option A is the answer.