Respuesta :
ANSWER
36,-36
EXPLANATION
The given function is:
[tex]f(x) = {x}^{2} + 12x + 6[/tex]
To write this function in vertex form;
We need to add and subtract the square of half the coefficient of x.
The coefficient of x is 12.
Half of it is 6.
The square of 6 is 36.
Therefore we add and subtract 36.
Hence the zero pair is:
36, -36.
The correct answer is D.
Answer:
Last option: 36,-36
Step-by-step explanation:
The vertex form of the function of a parabola is:
[tex]y=a(x-h)^2+k[/tex]
Where (h,k) is the vertex.
To write the given function in vertex form, we need to Complete the square.
Given the Standard form:
[tex]y=ax^2+bx+c[/tex]
We need to add and subtract [tex](\frac{b}{2})^2[/tex] on one side in order to complete the square.
Then, given [tex]y=x^2+12x+6[/tex], we know that:
[tex](\frac{12}{2})^2=6^2=36[/tex]
Then, completing the square, we get:
[tex]y=x^2+12x+(36)+6-(36)[/tex]
[tex]y=(x+6)^2-30[/tex] (Vertex form)
Therefore, the answer is: 36,-36