Fill in the blank of the triangle below x=

ANSWER
[tex]37.53units[/tex]
EXPLANATION
From the given right angle triangle the known angle is 47°
The side length which is x units is opposite to the known angle.
We also know a side length 35 units which is adjacent to the given angle.
We use the tangent ratio to obtain,
[tex] \tan(47 \degree) = \frac{opposite}{adjacent} [/tex]
[tex]\tan(47 \degree) = \frac{x}{35} [/tex]
[tex]x = 35\tan(47 \degree) = 37.53 \: units[/tex]
Answer:
x = 37.53 units
Step-by-step explanation:
Points to remember
Trigonometric ratios
Sin θ = Opposite side/Hypotenuse
Cos θ = Adjacent side/Hypotenuse
Tan θ = Opposite side/Adjacent side
From the figure we can see a right angled triangle with one angle is 47° and adjacent side length of that angle is 35
To find the value of x
From the figure we can write,
Tan 47 = Opposite side/Adjacent side
= x/35
x = 35 * Tan 47
= 37.53 units