Choose the table that represents g(x) = 3⋅f(x) when f(x) = x − 1.


x g(x)
1 2
2 1
3 0

x g(x)
1 2
2 5
3 8

x g(x)
1 5
2 8
3 11

x g(x)
1 0
2 3
3 6

Respuesta :

[tex]\bf f(x)=x-1\qquad \qquad g(x)=3\cdot f(x)\implies g(x)=\underline{3(x-1)} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{ccll} x&g(x)\\ \cline{1-2} 1&0\\2&3\\3&6 \end{array}\qquad \qquad (\stackrel{x_1}{1}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{6})[/tex]

[tex]\bf slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{6-0}{3-1}\implies \cfrac{6}{2}\implies 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-0=3(x-1)\implies y=\underline{3(x-1)}[/tex]

The table that represents g(x) = 3⋅f(x) when f(x) = x − 1 is that of Option D;

x g(x)

1 0

2 3

3 6

  • We are given;

f(x) = x − 1

We want to find; g(x) = 3⋅f(x)

This means that; g(x) = 3(x - 1)

Looking at the options, the input values to be used are x = 1, 2 3.

  • Thus;

When x = 1; g(x) = 3(1 - 1 )

g(x) = 0

When x = 2; g(x) = 3(2 - 1)

g(x) = 3

When x = 3; g(x) = 3(3 - 1)

g(x) = 6

Looking at the options, only the table in option D is correct.

Read more at; https://brainly.in/question/24797649