Respuesta :

For this case we evaluate the series for each value of "n" from 0 to 3:

So:

[tex](0x + 2) + (1x + 2) + (2x + 2) + (3x + 2) =\\(0 + 2) + (x + 2) + (2x + 2) + (3x + 2) =\\2 + x + 2 + 2x + 2 + 3x + 2 =[/tex]

We add similar terms and we have the result of expanding the series is:

[tex]8 + 6x[/tex]

ANswer:

Option C

[tex]6x + 8[/tex]

Answer: Third option.

Step-by-step explanation:

Given  [tex]3\\\sum(nx+2)\\n=0[/tex], We know that indicates that we need to start with [tex]n=0[/tex] and finish with [tex]n=3[/tex],

In order to expand the series, the procedure is the following:

[tex]3\\\sum(nx+2)=(0x+2)+(1x+2)+(2x+2)+(3x+2)\\n=0\\\\3\\\sum(nx+2)=2+x+2+2x+2+3x+2\\n=0\\\\3\\\sum(nx+2)=6x+8\\n=0[/tex]

This result matches with the third option.