Respuesta :
Answer:
Use this website for this used question. Hope this helps.
https://brainly.com/question/8567836
Answer: The required product is [tex]4x^5\sqrt[3]{3x}[/tex]
Step-by-step explanation: We are given to find the following product :
[tex]P=\sqrt[3]{16x^7}\times \sqrt[3]{12x^9}.[/tex]
We will be using the following property of exponents :
[tex](i)~\sqrt[b]{x^a}=x^\frac{a}{b}\\\\(ii)~x^a\times x^b=x^{a+b}\\\\(iii)~x^a\times y^a=(xy)^a.[/tex]
The required multiplication is as follows :
[tex]P\\\\=\sqrt[3]{16x^7}\times \sqrt[3]{12x^9}\\\\=(16x^7)^\frac{1}{3}\times (12x^9)^\frac{1}{3}\\\\=(16\times12\times x^{7+9})^\frac{1}{3}\\\\=(192x^{16})^\frac{1}{3}\\\\=192^\frac{1}{3}x^\frac{16}{3}\\\\=(64\times3)^\frac{1}{3}x^\frac{16}{3}\\\\=4^{3\times\frac{1}{3}}3^\frac{1}{3}x^{5+\frac{1}{3}}\\\\=4\times 3^\frac{1}{3}x^5\times x^\frac{1}{3}\\\\=4x^5\sqrt[3]{3x}.[/tex]
Thus, the required product is [tex]4x^5\sqrt[3]{3x}.[/tex]