2. Find the value of x to the nearest tenth.
a. 4.5
b. 5.4
c. 6.3
d. 7.2

3. Find the value of x.
a. 7
b. 7.5
c. 8
d. 8.5


4. FG ⊥ OP, RS ⊥ OQ. FG=40, RS=40, OP=15. Find x.
a. 15
b. 17
c. 20
d. 21


5. Find the value of x to the nearest tenth.
a. 7.5
b. 7.9
c. 8.1
d. 8.9

2 Find the value of x to the nearest tenth a 45 b 54 c 63 d 72 3 Find the value of x a 7 b 75 c 8 d 85 4 FG OP RS OQ FG40 RS40 OP15 Find x a 15 b 17 c 20 d 21 5 class=
2 Find the value of x to the nearest tenth a 45 b 54 c 63 d 72 3 Find the value of x a 7 b 75 c 8 d 85 4 FG OP RS OQ FG40 RS40 OP15 Find x a 15 b 17 c 20 d 21 5 class=
2 Find the value of x to the nearest tenth a 45 b 54 c 63 d 72 3 Find the value of x a 7 b 75 c 8 d 85 4 FG OP RS OQ FG40 RS40 OP15 Find x a 15 b 17 c 20 d 21 5 class=
2 Find the value of x to the nearest tenth a 45 b 54 c 63 d 72 3 Find the value of x a 7 b 75 c 8 d 85 4 FG OP RS OQ FG40 RS40 OP15 Find x a 15 b 17 c 20 d 21 5 class=

Respuesta :

Answer:

Part 2) Option b. 5.4

Part 3) Option c. 8

Part 4) Option a. 15

Part 5) Option d. 8.9

Step-by-step explanation:

Part 2) Find the value of x to the nearest tenth

we know that

x is the radius of the circle

Applying the Pythagoras Theorem

[tex]x^{2}=3.6^{2}+(8/2)^{2}[/tex]

[tex]x^{2}=28.96[/tex]

[tex]x=5.4\ units[/tex]

Part 3) Find the value of x

In this problem

x=8

Verify

step 1

Find the radius of the circle

Let

r -----> the radius of the circle

Applying the Pythagoras Theorem

[tex]r^{2}=8^{2}+(15/2)^{2}[/tex]

[tex]r^{2}=120.25[/tex]

[tex]r=\sqrt{120.25}[/tex]

step 2

Find the value of x

Applying the Pythagoras Theorem

[tex]r^{2}=x^{2}+(15/2)^{2}[/tex]

substitute

[tex]120.25=x^{2}+56.25[/tex]

[tex]x^{2}=120.25-56.25[/tex]

[tex]x^{2}=64[/tex]

[tex]x=8\ units[/tex]

Part 4) Find the value of x

In this problem

x=OP=15

Verify

step 1

Find the radius of the circle

Let

r -----> the radius of the circle

In the right triangle FPO

Applying the Pythagoras Theorem

[tex]r^{2}=15^{2}+(40/2)^{2}[/tex]

[tex]r^{2}=625[/tex]

[tex]r=25[/tex]

step 2

Find the value of x

In the right triangle RQO

Applying the Pythagoras Theorem

[tex]25^{2}=x^{2}+(40/2)^{2}[/tex]

[tex]625=x^{2}+400[/tex]      

[tex]x^{2}=625-400[/tex]

[tex]x^{2}=225[/tex]

[tex]x=15\ units[/tex]

Part 5) Find the value of x

Applying the Pythagoras Theorem

[tex]6^{2}=4^{2}+(x/2)^{2}[/tex]

[tex]36=16+(x/2)^{2}[/tex]

[tex](x/2)^{2}=36-16[/tex]

[tex](x/2)^{2}=20[/tex]

[tex](x/2)=4.47[/tex]

[tex]x=8.9[/tex]