Which of the following equations represents an ellipse with a minor axis of length 10 and foci located at (3,6) and (7,6)?

Answer:
It is choice A.
Step-by-step explanation:
The general form is (x - h)^2 / a^2 + (x - k)^2/b^2 = 1 where (h, k) is the center, 2a = major axis and 2b = minor axis.
The ellipse in the question has a^2 > b^2 so the major axis is parallel to the x axis.
The minor axis which is parallel to the y-axis is of length 10 so b^2 = (1/2 * 10)^2
= 25 so we can eliminate C.
The center of the ellipse = the midpoint of a line joining the focii so it is:
( 3+ 7)/2, 6)
= (5,6).
As (h, k) is the center we have h = 5 and k = 6.
So it is choice A.
The equation of the eclipse will be [tex]\frac{(x-5)^2}{29} +\frac{(y-6)^2}{25} =1[/tex] i.e. option A.
The standard equation of the ellipse is [tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2} =1[/tex].
Here,
(h, k) is the center, and 2a and 2b are major and minor axis.
We have,
Length of minor axis = 10
i.e. 2b = 10
And, b = 5
And,
Foci (c) located at (3,6) and (7,6),
i.e. Major axis is parallel to x-axis. [Because y is constant]
And,
The foci (c) always lie on the major axis.
And,
c² = a² - b²
Now,
The center of an ellipse is the midpoint of both the major and minor axes, i.e. the midpoint of a line joining the foci (c),
i.e. Center [tex]=( \frac{x_1 + x_2 }{2}, \frac{y_1 + y_2}{2}) =( \frac{3+7}{2}, \frac{6+6}{2}) =(5, 6)[/tex]
Now,
Foci (c) = 5 - 3 = 2
So,
c² = a² - b²
i.e.
2² = a² - 5²
4 = a² - 25
⇒ a² = 29
And, b² = 5² = 25
So,
h = 5 and k = 6
Now,
Putting the values in the standard form of equation of the ellipse,
i.e.
[tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2} =1[/tex]
i.e.
[tex]\frac{(x-5)^2}{29} +\frac{(y-6)^2}{25} =1[/tex]
So, this is the equation of the eclipse i.e. option A.
Hence, we can say that the equation of the eclipse will be [tex]\frac{(x-5)^2}{29} +\frac{(y-6)^2}{25} =1[/tex] i.e. option A.
To know more about equation of the eclipse click here
https://brainly.com/question/14281133
#SPJ2