Triangle $ABC$ has side lengths $AB = 9$, $AC = 10$, and $BC = 17$. Let $X$ be the intersection of the angle bisector of $\angle A$ with side $\overline{BC}$, and let $Y$ be the foot of the perpendicular from $X$ to side $\overline{AC}$. Compute the length of $\overline{XY}$.

Respuesta :

frika

Answer:

[tex]\dfrac{72}{19}[/tex]

Step-by-step explanation:

Consider triangle ABC. Segment AX is angle A bisector. Its length can be calculated using formula

[tex]AX^2=\dfrac{AB\cdot AC}{(AB+AC)^2}\cdot ((AB+AC)^2-BC^2)[/tex]

Hence,

[tex]AX^2=\dfrac{9\cdot 10}{(9+10)^2}\cdot ((9+10)^2-17^2)=\dfrac{90}{361}\cdot (361-289)=\dfrac{90}{361}\cdot 72=\dfrac{6480}{361}[/tex]

By the angle bisector theorem,

[tex]\dfrac{AB}{AC}=\dfrac{BX}{XC}[/tex]

So,

[tex]\dfrac{9}{10}=\dfrac{BX}{17-BX}\Rightarrow 153-9BX=10BX\\ \\19BX=153\\ \\BX=\dfrac{153}{19}[/tex]

and

[tex]XC=17-\dfrac{153}{19}=\dfrac{170}{19}[/tex]

By the Pythagorean theorem for the right triangles AXY and CXY:

[tex]AX^2=AY^2+XY^2\\ \\XC^2=XY^2+CY^2[/tex]

Thus,

[tex]\dfrac{6480}{361}=XY^2+AY^2\\ \\\left(\dfrac{170}{19}\right)^2=XY^2+(10-AY)^2[/tex]

Subtract from the second equation the first one:

[tex]\dfrac{28900}{361}-\dfrac{6480}{361}=(10-AY)^2-AY^2\\ \\\dfrac{22420}{361}=100-20AY+AY^2-AY^2\\ \\\dfrac{1180}{19}=100-20AY\\ \\20AY=100-\dfrac{1180}{19}=\dfrac{1900-1180}{19}=\dfrac{720}{19}\\ \\AY=\dfrac{36}{19}[/tex]

Hence,

[tex]XY^2=\dfrac{6480}{361}-\left(\dfrac{36}{19}\right)^2=\dfrac{6480-1296}{361}=\dfrac{5184}{361}\\ \\XY=\dfrac{72}{19}[/tex]

Ver imagen frika

Answer:

[tex]XY=\frac{72}{19}[/tex]

Step-by-step explanation:

The semiperimeter of triangle [tex]\triangle PQR[/tex] is [tex](9 + 10 + 17)/2 = 18[/tex], so by Heron's formula, the area of triangle [tex]\triangle PQR[/tex] is [tex]\sqrt{18 (18 - 9)(18 - 10)(18 - 17)} = 36[/tex].

The area of triangle $PRX$ is

[tex][PRX] = \frac{XR}{QR}\cdot [PQR] = \frac{XR}{QR} \cdot 36[/tex].By the angle bisector theorem, we have [tex]\frac{XR}{QX} = \frac{PR}{PQ} = \frac{10}{9}[/tex], so [tex]XR = \frac{10}{9} QX[/tex] and [tex]QR = QX + XR = \frac{19}{9} QX[/tex], which means

[tex][PRX] = \frac{XR}{QR}\cdot 36 = \frac{(10/9)QX}{(19/9)QX}\cdot 36 = \frac{360}{19}[/tex].

Then [tex]XY[/tex] is the height of triangle [tex]\triangle PXR[/tex] with respect to base [tex]\overline{PR}[/tex], so [tex](PR)(XY)/2 = 360/19[/tex], which gives us

[tex]XY = \frac{720}{19 PR} = \frac{720}{19\cdot 10} = \boxed{\frac{72}{19}}[/tex].