Respuesta :

Answer:

dy/dx = [tex]\frac{1}{(4x^{3}-7)}*[\frac{(3x^{5}+1)(12x^{2})-(4x^{3}-7)(15x^{4})}{(3x^{5}+1)}][/tex]

Step-by-step explanation:

* Lets revise some rules for the derivative

- The derivative of ㏑(f(x)) = 1/f(x) × f'(x)

- The derivative of u/v = (vu'-uv')/v²

- The derivative of the constant is 0

* Lets solve the problem

∵ y = ㏑[(4x³ - 7)/(3x^5 + 1)]

- Let u = 4x³ - 7 and v = 3x^5 + 1

∵ u = 4x³ - 7

∴ u' = 4(3)x^(3-1) - 0 = 12x²

∵ v = 3x^5 + 1

∴ v' = 3(5)x^(5-1) + 0 = 15x^4

∵ The derivative of u/v = (vu' - uv')/v²

∴ The derivative of u/v = [tex]\frac{(3x^{5}+1)(12x^{2})-(4x^{3}-7)(15x^{4})}{(3x^{5}+1)^{2}}[/tex]

∵ The derivative of ㏑(f(x)) = 1/f(x) × f'(x)

∴ dy/dx = [tex]\frac{1}{\frac{(4x^{3}-7)}{(3x^{5}+1)}}*[\frac{(3x^{5}+1)(12x^{2})-(4x^{3}-7)(15x^{4}}{(3x^{5}+1)^{2}}][/tex]

- Simplify by cancel bracket (3x^5 + 1)from the 1st fraction with the

 same bracket in the 2nd fraction

∴ dy/dx = [tex]\frac{1}{(4x^{3}-7)}*[\frac{(3x^{5}+1)(12x^{2})-(4x^{3}-7)(15x^{4})}{(3x^{5}+1)}][/tex]