Respuesta :

Answer:

tan²x

Step-by-step explanation:

Using the Pythagorean identity

sin²x + cos²x = 1

Divide all terms by cos²x

[tex]\frac{sin^2x}{cos^2x}[/tex] + [tex]\frac{cos^2x}{cos^2x}[/tex] = [tex]\frac{1}{cos^2x}[/tex], that is

tan²x + 1 = sec²x ( subtract 1 from both sides )

tan²x = sec²x - 1