Respuesta :

Answer:

1

Step-by-step explanation:

[tex]4^{5}[/tex] can be expressed as [tex]2^{(2)(5)}[/tex] = [tex]2^{10}[/tex]

Similarly [tex]4^{8}[/tex] can be expressed as [tex]2^{(2)(8)}[/tex] = [tex]2^{16}[/tex]

Numerator becomes:

[tex]2^{10}[/tex] · [tex]-2^{9}[/tex] = [tex]-2^{19}[/tex]

Denominator becomes:

[tex]2^{16}[/tex] · [tex]-2^{3}[/tex] = [tex]-2^{19}[/tex]

Since numerator = Denominator,

Answer = 1

Edit reason: typo