At what distance does a 100 Watt lightbulb deliver the same power per unit surface area as a 75 Watt lightbulb produces 10 m away from the bulb? (Assume both have the same efficiency for converting electrical energy in the circuit into emitted electromagnetic energy.). Recall that Watts = Joules/second = power = energy per unit time. Assume that the power of the electromagnetic waves spreads uniformly in all directions (i.e. spreads out over the area of a sphere) and use the formula for the surface area of a sphere.

Respuesta :

Answer:

At 11.5 m

Explanation:

The power per unit area corresponds to the intensity, which is given by

[tex]I=\frac{P}{4\pi r^2}[/tex]

where

P is the power

[tex]4\pi r^2[/tex] is the area irradiated at a distance r from the source (it corresponds to the surface area of a sphere of radius r)

Here we want the intensity of the two light bulbs to be the same, so

[tex]I_1 = I_2\\\frac{P_1}{4 \pi r_1^2}=\frac{P_2}{4\pi r_2^2}[/tex]

where we have

P1 = 100 W is the power of the first light bulb

P2 = 75 W is the power of the second light bulb

r2 = 10 m is the distance from the second light bulb

Solving for r1, we find

[tex]r_1 = r_2 \sqrt{\frac{P_1}{P_2}}= (10 m) \sqrt{\frac{100 W}{75 W}} = 11.5 m[/tex]