Check the picture below.
[tex]\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\ \cline{1-1} C=4.5 \end{cases}\implies 4.5=2\pi r\implies \cfrac{4.5}{2\pi }=r \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} h=8\\ r=\frac{4.5}{2\pi } \end{cases}\implies V=\pi \left( \cfrac{4.5}{2\pi } \right)^2(8)\implies V=\begin{matrix} \pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} \cdot \cfrac{20.25}{\begin{matrix} 4 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}\underset{\pi }{\begin{matrix} \pi^2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} }}(\stackrel{2}{\begin{matrix} 8 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}})[/tex]
[tex]\bf V=\cfrac{40.5}{\pi }~cm^3~\hspace{9em} \stackrel{\textit{since density is }752kg~per~cm^3}{density\implies 752\left( \cfrac{40.5}{\pi } \right)}\qquad \approx ~~9694[/tex]