What is the following simplified product? Assume

Answer:
The correct answer option is D. [tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex].
Step-by-step explanation:
We are given the following expression:
[tex] \left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right ) [/tex]
Assuming that [tex]x\geq 0[/tex], we are to find its simplified product.
[tex] \left ( \sqrt { 10 x ^ 4 } -x \sqrt { 5 x ^ 2 } \right ) \left ( 2 \sqrt { 15 x ^ 4 } + \sqrt { 3 x ^ 3 } \right ) [/tex]
[tex]\\\\ = 2 \sqrt { 150 x ^ 8 } + \sqrt { 3 0 x ^ 7 }-2x\sqrt{75x^6}-x\sqrt{15x^5} \\\\ =2\sqrt{25\times6x^8}+x^3\sqrt{30x}-2x\sqrt{25\times3x^6}-x^3\sqrt{15x} \\\\ =10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]
The simplified product is:
[tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]
The expression is given by:
[tex](\sqrt{10x^4}-x\sqrt{5x^2})(2\sqrt{15x^4}+\sqrt{3x^3})[/tex]
Now we know that:
[tex]\sqrt{x^2}=x\\\\and\\\\\sqrt{x^4}=\sqrt{(x^2)^2}=x^2[/tex]
Hence, we get the expression as follows:
[tex](\sqrt{10x^4}-x\sqrt{5x^2})(2\sqrt{15x^4}+\sqrt{3x^3})=(x^2\sqrt{10}-x\cdot x\sqrt{5})(2x^2\sqrt{15}+x\sqrt{3x})[/tex]
Now, we will use the property that:
[tex](a+b)(c+d)=a(c+d)+b(c+d)[/tex]
Hence, we have the expression as:
[tex]=x^2\sqrt{10}(2x^2\sqrt{15}+x\sqrt{3x})-x^2\sqrt{5}(2x^2\sqrt{15}+x\sqrt{3x})[/tex]
[tex]=2x^4\sqrt{10}\sqrt{15}+x^3\sqrt{10}\sqrt{3x}-2x^4\sqrt{5}\sqrt{15}-x^3\sqrt{5}\sqrt{3x}[/tex]
Now we know that:
[tex]\sqrt{a}\sqrt{b}=\sqrt{ab}[/tex]
i.e. we have:
[tex]=2x^4\sqrt{150}+x^3\sqrt{30x}-2x^4\sqrt{75}-x^3\sqrt{15x}\\\\=2x^4\sqrt{5^2\cdot 6}+x^3\sqrt{30x}-2x^4\sqrt{5^2\cdot 3}-x^3\sqrt{15x}\\\\=10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]