Respuesta :

Answer:

q = ± 5[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Given

q² - 125 = 0 ( add 125 to both sides )

q² = 125 ( take the square root of both sides )

q = ± [tex]\sqrt{125}[/tex]

  = ± [tex]\sqrt{25(5)}[/tex]

  = ± [tex]\sqrt{25}[/tex] × [tex]\sqrt{5}[/tex]

  = ± 5[tex]\sqrt{5}[/tex]

Answer:

Roots are [tex]q=5\sqrt{5},-5\sqrt{5}[/tex]

Step-by-step explanation:

Given : Function [tex]f(q)=q^2-125[/tex]

To find : Which are the roots of the quadratic function ?

Solution :

To find the roots equate the function to zero.

[tex]q^2-125=0[/tex]

Add 125 both side,

[tex]q^2=125[/tex]

Taking root both side,

[tex]q=\pm \sqrt{125}[/tex]

[tex]q=\pm \sqrt{5\times 5\times 5}[/tex]

[tex]q=\pm 5\sqrt{5}[/tex]

Therefore, roots are [tex]q=5\sqrt{5},-5\sqrt{5}[/tex]