Respuesta :

aachen

Answer: 20

Step-by-step explanation:

Given: Point [tex]\text{G}[/tex] is on line segment [tex]\text{FH}[/tex]. Given [tex]\text{FH}[/tex] is [tex]4\text{x}+8[/tex] , [tex]\text{FG}[/tex]. is [tex]\text{x}[/tex], and [tex]\text{GH}[/tex] is [tex]5\text{x}[/tex].

To Find: the numerical length for [tex]\text{GH}[/tex].

Solution:

Point [tex]\text{G}[/tex] is on the line segment [tex]\text{FH}[/tex]

therefore,

[tex]\text{FH}=\text{FG}+\text{GH}[/tex]

putting the values

[tex]4\text{x}+8=\text{x}+5\text{x}[/tex]

[tex]4\text{x}+8=6\text{x}[/tex]

[tex]8=2\text{x}[/tex]

[tex]\text{x}=4[/tex]

Now,

[tex]\text{GH}=5\text{x}[/tex]

[tex]\text{GH}=5\times4[/tex]

[tex]\text{GH}=20[/tex]

Hence numerical length of line segment [tex]\text{GH}[/tex] is [tex]20[/tex]

The numerical length of GH is 20

If Point G is on the line segment FH, this means that:

  • FG + GH = FH

Given the following parameters:

FH=4x+8

FG=x

GH=5x

Substitute the given values into the formula as shown:

x + 5x = 4x + 8

6x = 4x + 8

6x - 4x = 8

2x = 8

Divide both sides by 2

2x/2 = 8/2

x = 4

Get the length of GH

GH = 5x

GH = 5(4)

GH = 20

Hence the numerical length of GH is 20

Learn more here: https://brainly.com/question/17247176