caerb
contestada

Find the value of tan( π + θ) if θ terminates in Quadrant III and sinθ = -5/13

Respuesta :

ANSWER

[tex]\tan(\pi + \theta)= \frac{5}{12} [/tex]

EXPLANATION

We first obtain

[tex] \cos( \theta) [/tex]

using the Pythagorean Identity.

[tex]\cos ^{2} ( \theta) + \sin ^{2} ( \theta) = 1[/tex]

[tex] \implies \: \cos ^{2} ( \theta) + ( - \frac{5}{13} )^{2} = 1[/tex]

[tex]\implies \: \cos ^{2} ( \theta) + \frac{25}{169}= 1[/tex]

[tex]\implies \: \cos ^{2} ( \theta) = 1 - \frac{25}{169}[/tex]

[tex]\implies \: \cos ^{2} ( \theta) = \frac{144}{169}[/tex]

[tex]\implies \: \cos ( \theta) = \pm \: \sqrt{\frac{144}{169} } [/tex]

[tex]\implies \: \cos ( \theta) = \pm \: \frac{12}{13} [/tex]

In the third quadrant, the cosine ratio is negative.

[tex]\implies \: \cos ( \theta) = - \: \frac{12}{13} [/tex]

The tangent function has a period of π and [tex]\pi + \theta[/tex] is in the third quadrant.

This implies that:

[tex] \tan(\pi + \theta)= \tan( \theta) [/tex]

[tex]\tan(\pi + \theta)= \frac{ \sin( \theta) }{ \cos( \theta) } [/tex]

[tex]\tan(\pi + \theta)= \frac{ - \frac{ 5}{13} }{ - \frac{12}{13} } [/tex]

This gives us:

[tex]\tan(\pi + \theta)= \frac{5}{12} [/tex]