Respuesta :
Triangle ABC
Angle A = 74°
a = 126
b = 84
Use the sine rule
[tex] \frac{a}{sin A} = \frac{b}{sin B} [/tex]
Plug in the given
[tex] \frac{126}{sin(74)} = \frac{84}{sin(B)} [/tex]
Cross multiply
126 × sin(B) = 84 × sin(74)
Divide by 126
[tex] \frac{126sin(B)}{126} = \frac{84sin(74)}{126} [/tex]
126 and 126 cancels out
sin(B) = [tex] \frac{84sin(74)}{126} [/tex]
take sin inverse ([tex]sin^{-1} [/tex])
B = [tex] sin^{-1} [/tex] ([tex] \frac{84sin(74)}{126} [/tex])
B = 39.85° = 39.9°
Angle A = 74°
a = 126
b = 84
Use the sine rule
[tex] \frac{a}{sin A} = \frac{b}{sin B} [/tex]
Plug in the given
[tex] \frac{126}{sin(74)} = \frac{84}{sin(B)} [/tex]
Cross multiply
126 × sin(B) = 84 × sin(74)
Divide by 126
[tex] \frac{126sin(B)}{126} = \frac{84sin(74)}{126} [/tex]
126 and 126 cancels out
sin(B) = [tex] \frac{84sin(74)}{126} [/tex]
take sin inverse ([tex]sin^{-1} [/tex])
B = [tex] sin^{-1} [/tex] ([tex] \frac{84sin(74)}{126} [/tex])
B = 39.85° = 39.9°


Answer:
Currently doing the test and got A. 39.9°.
The full process is explained above. This is a confirmation that the other person is correct.