Respuesta :

First set of data:
Mean - 6.5
Absolute deviation - 2.4

Second set of data:
Mean - 4.475
Absolute deviation - 2.275

Answer:

The mean absolute deviation of first data is [tex]2.54[/tex]

and for second data is [tex]2.115[/tex]

Step-by-step explanation:

Mean of  data [tex]x_1,x_2,x_3,x_4,...x_{n}[/tex] is calculated as:

[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]

and mean absolute deviation is calculated as [tex]\sqrt{mean}[/tex]

The given first data : 10 7 1 6 7 9 8 10 2 5

[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]

[tex]mean=\frac{10+7+1+6+7+9+8+10+2+5}{10}[/tex]

[tex]mean=6.5[/tex]

mean absolute deviation [tex]\sqrt{6.5}=2.54[/tex]

The given first data : 2   2.4   6.5   7

[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]

[tex]mean=\frac{2+2.4+6.5+7}{4}[/tex]

[tex]mean=\frac{17.9}{4}[/tex]

[tex]mean=4.475[/tex]

mean absolute deviation [tex]\sqrt{4.475}=2.115[/tex]

Therefore, the mean absolute deviation of first data is [tex]2.54[/tex]

and for second data is [tex]2.115[/tex]