Respuesta :
First set of data:
Mean - 6.5
Absolute deviation - 2.4
Second set of data:
Mean - 4.475
Absolute deviation - 2.275
Mean - 6.5
Absolute deviation - 2.4
Second set of data:
Mean - 4.475
Absolute deviation - 2.275
Answer:
The mean absolute deviation of first data is [tex]2.54[/tex]
and for second data is [tex]2.115[/tex]
Step-by-step explanation:
Mean of data [tex]x_1,x_2,x_3,x_4,...x_{n}[/tex] is calculated as:
[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]
and mean absolute deviation is calculated as [tex]\sqrt{mean}[/tex]
The given first data : 10 7 1 6 7 9 8 10 2 5
[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]
[tex]mean=\frac{10+7+1+6+7+9+8+10+2+5}{10}[/tex]
[tex]mean=6.5[/tex]
mean absolute deviation [tex]\sqrt{6.5}=2.54[/tex]
The given first data : 2 2.4 6.5 7
[tex]mean=\frac{x_1+x_2+x_3+x_4+...+x_n}{n}[/tex]
[tex]mean=\frac{2+2.4+6.5+7}{4}[/tex]
[tex]mean=\frac{17.9}{4}[/tex]
[tex]mean=4.475[/tex]
mean absolute deviation [tex]\sqrt{4.475}=2.115[/tex]
Therefore, the mean absolute deviation of first data is [tex]2.54[/tex]
and for second data is [tex]2.115[/tex]