Respuesta :
Answer:
6
Step-by-step explanation:
GIVEN :
[tex](216)^{\frac{1}{3} }[/tex]
Solution :
let
[tex](216)^{\frac{1}{3} }=x[/tex]
[tex]216 = x^{3}[/tex]
[tex]6^{3} = x^{3}[/tex]
⇒ x = 6
⇒[tex](216)^{\frac{1}{3} }= 6 [/tex]
Answer:
Option (b) is correct.
[tex](216)^{\frac{1}{3}}=6[/tex]
Step-by-step explanation:
Given: 216 power of 1/3
We have to find an equivalent number to 216 power of 1/3
Consider 216 power of 1/3
Writing mathematically as, [tex](216)^{\frac{1}{3} }[/tex]
Also, 216 can be written as product of 6 three times that is 6× 6 × 6
Thus, [tex](216)^{\frac{1}{3}}=(6\times 6\times 6)^{\frac{1}{3}}[/tex]
Simplify, we get,
[tex](6\times 6\times 6)^{\frac{1}{3}}=(6^3)^{\frac{1}{3}}[/tex]
Apply property of exponents, we have,
[tex](a^n)^m=a^{nm}[/tex]
[tex](6^3)^{\frac{1}{3}}=6^{\frac{3}{3}}=6[/tex]
Thus, [tex](216)^{\frac{1}{3}}=6[/tex]
Option (b) is correct.