Respuesta :

Answer:

6

Step-by-step explanation:

GIVEN :


[tex](216)^{\frac{1}{3} }[/tex]


Solution :

let


[tex](216)^{\frac{1}{3} }=x[/tex]


[tex]216 = x^{3}[/tex]


[tex]6^{3} = x^{3}[/tex]


⇒ x = 6


[tex](216)^{\frac{1}{3} }= 6 [/tex]

Answer:

Option (b) is correct.

[tex](216)^{\frac{1}{3}}=6[/tex]

Step-by-step explanation:

Given:  216 power of 1/3

We have to find an equivalent number to  216 power of 1/3

Consider  216 power of 1/3

Writing mathematically as, [tex](216)^{\frac{1}{3} }[/tex]

Also, 216 can be written as product of 6 three times that is 6× 6 × 6

Thus, [tex](216)^{\frac{1}{3}}=(6\times 6\times 6)^{\frac{1}{3}}[/tex]

Simplify, we get,

[tex](6\times 6\times 6)^{\frac{1}{3}}=(6^3)^{\frac{1}{3}}[/tex]

Apply property of exponents, we have,

[tex](a^n)^m=a^{nm}[/tex]

[tex](6^3)^{\frac{1}{3}}=6^{\frac{3}{3}}=6[/tex]

Thus, [tex](216)^{\frac{1}{3}}=6[/tex]

Option (b) is correct.