Answer:
The probability that BOTH of them have the secret decoder ring is [tex]\frac{55}{1431}[/tex].
Step-by-step explanation:
From the given information it is clear that the total number of boxes is 54.
Total number of boxes that have the secret decoder ring = 11
Total number of boxes that have a different gift inside = 43
Total number of ways to select 2 boxes from the boxes that have the secret decoder ring is
[tex]\text{Favorable outcomes}=^{11}C_2=\frac{11!}{2!(11-2)!}=\frac{11\times 10\times 9!}{2!9!}=55[/tex]
Total number of ways to select 2 boxes from the total number of boxes is
[tex]\text{Total outcomes}=^{54}C_2=\frac{52!}{2!(52-2)!}=\frac{52\times 51\times 50!}{2!50!}=1431[/tex]
The probability that BOTH of them have the secret decoder ring is
[tex]P=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]
[tex]P=\frac{55}{1431}[/tex]
Therefore the probability that BOTH of them have the secret decoder ring is [tex]\frac{55}{1431}[/tex].