Respuesta :

Answer:

The coordinates of vertex D are (1,2).

Step-by-step explanation:

Let the coordinates of D are (a,b).

It is given that ABCD is a parallelogram and the vertices of the parallelogram are A(-2,4), B(1,3) and C(4,1).

According to the property of parallelogram, the diagonals of the parallelogram bisect each other.

AC and BD are diagonals of the parallelogram ABCD.

Midpoint formula:

[tex]Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Using midpoint formula, the midpoint of AC is

[tex]Midpoint_{AC}=(\frac{-2+4}{2},\frac{4+1}{2})=(1,\frac{5}{2})[/tex]

Using midpoint formula, the midpoint of BD is

[tex]Midpoint_{BD}=(\frac{1+a}{2},\frac{3+b}{2})[/tex]

Midpoint of both diagonals is the intersection point of the diagonals.

[tex]Midpoint_{AC}=Midpoint_{BD}[/tex]

[tex](1,\frac{5}{2})=(\frac{1+a}{2},\frac{3+b}{2})[/tex]

On comparing both the sides we get

[tex]1=\frac{1+a}{2}[/tex]

[tex]2=1+a[/tex]

[tex]2-1=a[/tex]

[tex]1=a[/tex]

The value of a is 1.

[tex]\frac{5}{2}=\frac{3+b}{2}[/tex]

[tex]5=3+b[/tex]

[tex]5-3=b[/tex]

[tex]2=b[/tex]

The value of b is 2.

Therefore the coordinates of vertex D are (1,2).