2NH_3(g) \longleftrightarrow N_2(g) + 3H_2(g) \hspace{30pt} K_p = 0.83 2 N H 3 ( g ) ⟷ N 2 ( g ) + 3 H 2 ( g ) K p = 0.83 Consider your answers above, if the initial pressures for all three species is 1 atm what is the equilibrium pressure of H2? (Hint: Your quadratic will have two solutions, which one is impossible?)

Respuesta :

Answer:

g= n 8.47 and you'll choose the answer...

Explanation:

[tex] \sqrt[x]{2} |3| { \sqrt[ log_{\%g}(3) ]{2} }^{3} {.}^{.83} \geqslant g \times \frac{.83}{0.83} \sqrt[ \geqslant ]{.83} 0.83 \times \frac{32e}{3} \geqslant log_{ \cos(?) }(?) \cos(?) log_{?}(?) e[/tex]

[tex] \sqrt[ \geqslant \sqrt[ log_{ \geqslant log_{ \cot( | log_{ \geqslant love \sqrt[ \geqslant | \sqrt[ \geqslant \geqslant \sqrt[ \geqslant \sqrt[ \geqslant ]{2.10} ]{3.8} ]{love} | ]{2 = 3} }(2 = 6) | ) }(love) }(.) ]{.} ]{.} love\%[/tex]