Answer:
[tex]0.136[/tex] meter
Explanation:
The following equation will be used to solve this question -
[tex]P_{atm} + \frac{1}{2} (rho)v^2 + (rho)gh = P_{inject} + \frac{1}{2}(rho)v_{inject}^2 + (rho)gh_{injec}[/tex]
[tex]P_{atm} -P_{injec} = 1400\frac{N}{m^{2} }[/tex]
Velocity is zero.
Removing out the nullified terms from the above equation, we get -
[tex](rho)gh = P_{injec}\\1050 * 9.8 * h = 1400\\h = \frac{1400}{1050*9.8} \\h = 0.136[/tex] meter
Hence, top of the liquid in the bottle must be at a height of [tex]0.136[/tex] meter.