contestada

The weight of a product is measured in pounds. A sample of 50 units is taken from a recent production. The sample yielded X⎯⎯⎯ = 75 lb, and we know that σ2 = 100 lb. Calculate a 99 percent confidence interval for μ.

Respuesta :

Answer:

The 99% confidence interval for the weights = [71.36lb, 78.64lb]

Explanation:

Mean weight

        [tex]\bar{x} =75 lb[/tex]

Variance of weights

        [tex]\sigma^2 =100lb[/tex]

Standard deviation,

       [tex]\sigma =\sqrt{100}=10lb[/tex]

Confidence interval  is given by

       [tex]\bar{x}-Z\times \frac{\sigma}{\sqrt{n}}\leq \mu\leq \bar{x}+Z\times \frac{\sigma}{\sqrt{n}}[/tex]

For 99% confidence interval Z = 2.576,

Number of weights, n = 50

Substituting

       [tex]75-2.576\times \frac{10}{\sqrt{50}}\leq \mu\leq 75+2.576\times \frac{10}{\sqrt{50}}\\\\71.36\leq \mu\leq 78.64[/tex]

The 99% confidence interval for the weights = [71.36lb, 78.64lb]