Answer: 0.4758
Step-by-step explanation:
Given : Mean : [tex]\mu=137\text{ lb}[/tex]
Standard deviation : [tex]\sigma =28.9\text{ lb}[/tex]
Also, the new population of pilots has normally distributed .
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x=130 lb .
[tex]z=\dfrac{130-137}{28.9}=-0.2422145\approx-0.24[/tex]
For x=171lb.
[tex]z=\dfrac{171-137}{28.9}=1.1764705\approx1.18[/tex]
The p-value =[tex]P(-0.24<z<1.18)=P(z<1.18)-P(z<-0.24)[/tex]
[tex]=0.8809999-0.4051651=0.4758348\approx0.4758348\approx0.4758[/tex]
Hence, the required probability : 0.4758