Respuesta :
Answer:
The answer in the procedure
Step-by-step explanation:
we know that
The volume of a rectangular pyramid is equal to
[tex]V=\frac{1}{3}LWH[/tex]
where
L is the length of the rectangular base
W is the width of the rectangular base
H is the height of the pyramid
If the pyramid is scaled proportionally by a factor of k
then
the new dimensions are
L=kL
W=kW
H=kH
substitute and find the new Volume V'
[tex]V'=\frac{1}{3}(kL)(kW)(kH)[/tex]
[tex]V'=\frac{1}{3}(k^{3})LWH[/tex]
[tex]V'=(k^{3})\frac{1}{3}LWH[/tex]
[tex]V'=(k^{3})V[/tex]
The new volume is equal to the scale factor k elevated to the cube multiplied by the original volume
Answer:
V = πr2h
V' = π × (k × r)2 × (k × h)
= π × k2 r2 × kh
= k3 × πr2h
= k3 × V
Step-by-step explanation: