Respuesta :

Answer:

D.  (3, -1).

Step-by-step explanation:

The vertex for ( x - a)^2 + b  is (a, b).

Comparing (x - 3)^2 - 1 with this we get:

a = 3 and b = -1.

Answer: Last Option

(3, -1)

Step-by-step explanation:

We have the following quadratic function:

[tex]f(x) =(x-3)^2 - 1[/tex]

By definition for a quadratic function in the form:

[tex]f (x) = a (x-h) ^ 2 + k[/tex]

the vertex of the function is always the point (h, k)

Note that for this case the values of h, a, and k are:

[tex]a = 1\\h = 3\\k = -1[/tex]

Therefore the vertex of the function [tex]f(x) =(x-3)^2 - 1[/tex] is the point

(3, -1)