A specimen of copper having a rectangular cross section 15.2 mm X19.1 mm (0.6 in. X 0.75 in.) is pulled in tension with 44500 N(10000 lbf) force, producing only elastic deformation. Calculate the resulting strain.

Respuesta :

Answer:

The elastic deformation is 0.00131.

Explanation:

Given that,

Force F = 44500 N

Cross section [tex]A =15.2mm\times19.1\ mm[/tex]

We Calculate the stress

Using formula of stress

[tex]\sigma=\dfrac{F}{A}[/tex]

Where, F = force

A = area of cross section

Put the value into the formula

[tex]\sigma=\dfrac{44500}{15.2\times10^{-3}\times19.1\times10^{-3}}[/tex]

[tex]\sigma=153.27\times10^{6}\ N/m^2[/tex]

We need to calculate the strain

Using formula of strain

[tex]Y=\dfrac{\sigma}{\epsilon}[/tex]

[tex]epsilon=\dfrac{\sigma}{Y}[/tex]

Where,

[tex]\sigma[/tex]=stress

Y = young modulus of copper

Put the value into the formula

[tex]\epsilon=\dfrac{153.27\times10^{6}}{117\times10^{9}}[/tex]

[tex]\epsilon =0.00131[/tex]

Hence, The elastic deformation is 0.00131.