Respuesta :
[tex]\displaystyle\\\int \limits_2^a(3x^2+x-1)\, dx=52\\\left|x^3+\dfrac{x^2}{2}-x\right|_2^a=52\\a^3+\dfrac{a^2}{2}-a-(2^3+\dfrac{2^2}{2}-2)=52\\a^3+\dfrac{a^2}{2}-a-(8+2-2)=52\\a^3+\dfrac{a^2}{2}-a-8=52\\a^3+\dfrac{a^2}{2}-a=60\\2a^3+a^2-2a=120\\2a^3+a^2-2a-120=0[/tex]
Now you need to solve the resulting equation, but it's not easy. The approx. solution is [tex]a\approx 3.8[/tex]
The exact solution is
[tex]a=\dfrac{1}{6}\left(-1+\sqrt[3]{6461-78\sqrt{6861}}+\sqrt[3]{6461+78\sqrt{6861}}\right)[/tex]
Answer:
a = 3.84
Step-by-step explanation:
Let's integrate the function
3x^2 becomes 3x^3/3 =x^3
x becomes x^2/2
-1 becomes -x
The intergral is x^3 +x^2/2 -x
We take the upper limit minus the lower limit
a^3 +a^2/2 -a - (2^3 + 2^2/2 -2) and that is equal to 52
Simplify
a^3 + a^2/2 -a - (8+2-2) = 52
a^3 +a^2/2 -a -(8) = 52
Subtract 52 from each side
a^3 +a^2/2 -a -8-52 = 52-52
a^3 +a^2/2 -a -60 =0
Multiply by 2
2a^3 +a^2 -2a -120 = 0
Using a graphing system, we see it only has 1 real root
This is at approximately
3.84
