Determine whether each function is even, odd, or neither. Someone please help asap!!!!

1.
[tex]f(x)=\sqrt{x^2}-9=|x|-9\\f(-x)=|-x|-9=|x|-9\\f(x)=f(-x)\implies\text{even}[/tex]
2.
[tex]g(x)=|x-3|\\g(-x)=|-x-3|\\g(x)\not=g(-x)\implies\text{not even}\\\\-g(x)=-|x-3|\\g(-x)\not=-g(x)\implies\text{not odd}[/tex]
3.
[tex]f(x)=\dfrac{x}{x^2-1}\\\\f(-x)=\dfrac{-x}{(-x)^2-1}=-\dfrac{x}{x^2-1}\\\\f(x)\not =f(-x)\implies \text{not even}\\\\-f(x)=-\dfrac{x}{x^2-1}\\f(-x)=-f(x)\implies \text{odd}[/tex]
4.
[tex]g(x)=x+x^2\\g(-x)=-x+(-x)^2=-x+x^2\\g(x)\not =g(-x)\implies \text{not even}\\\\-g(x)=-(x+x^2)=-x-x^2\\g(-x)\not =-g(x)\implies \text{not odd}[/tex]
Answer:
even
neither
odd
neither
Step-by-step explanation:
f(-x)=f(x) means f is even
f(-x)=-f(x) means f is odd
[tex]f(x)=\sqrt{x^2}-9[/tex]
Plug in -x.
[tex]f(-x)=\sqrt{(-x)^2}-9[/tex]
(-x)^2=x^2 so we have
[tex]f(-x)=\sqrt{x^2}-9[/tex]
This was the same function we started with f(x), so this function is even.
[tex]g(x)=|x-3|[/tex]
Plug in -x
[tex]g(-x)=|-x-3|[/tex]
[tex]g(-x)=|(-1)(x+3)|[/tex]
[tex]g(-x)=|(-1)||x+3|[/tex]
[tex]g(-x)=|x+3|[/tex]
We did not get the opposite or the same function back, so this is neither.
The opposite would have looked like this -|x-3|.
[tex]f(x)=\frac{x}{x^2-1}[/tex]
Plug in -x.
[tex]f(-x)=\frac{-x}{(-x)^2-1}[/tex]
[tex]f(-x)=\frac{-x}{x^2-1}[/tex] since (-x)^2 is the same as x^2
[tex]f(-x)=- \frac{x}{x^2-1}[/tex]
We got the opposite back so it is odd.
[tex]g(x)=x+x^2[/tex]
Plug in -x.
[tex]g(-x)=-x+(-x)^2[/tex]
(-x)^2=x^2
[tex]g(-x)=-x+x^2[/tex]
[tex]g(-x)=-(x-x^2)[/tex]
So we neither got the same or opposite back of the function, so it is neither. The opposite would have looked like this -(x+x^2) or -x-x^2
So
even
neither
odd
neither